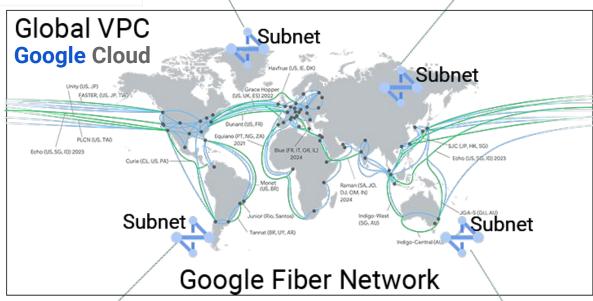
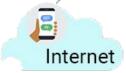


Global Network I

Internet

Network	Is a collection of connected devices for the purpose of communication. This can be a physical or logical connection	
Fiber Optic Cable	Cable made up of optical pairs that transmit data using light	


routes through BGP


Public network of networks which exchanges

Networking 101 sheet .!!!

Internet

Global Network II

Region	A Google Cloud geographic compute location (Made up of minimum 3 zones)	
Zone	Google Cloud compute facility within a region	
Point of presence (PoP)	A connection point from the internet to Google's network	
On-prem	Data center belonging to an enterprise	
Local Area Network (LAN)	This is a network that shares same communication lines in a distinct geographic area	
Virtual LAN (VLAN)	A logical method to allow communication between systems that are located on different LAN segments	

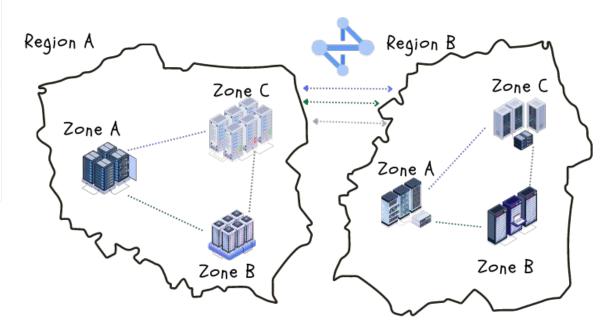
How much regions, zone and PoP exist in GCP

- Check current count here

Who controls networking on-prem?

- 100% controlled by the enterprise

Where are the regions located?


- Check list here

How is Google global network designed?

- Check list here

Networking 101 sheet .!!!

VPCs and IP addressing

VP C5 all	u ir addiessing
Virtual Private Cloud (VPC)	VPC is a Logical representation of an on-prem network. This is a global construct in GCP
VPC modes	There are two modes in GCP. Auto mode and custom mode
VPC subnets	In GCP these are regional and assigned to an IP address range
IP address	A unique address used to identity host on network. Made up of network and host portions
Subnet mask	This segments and IP address into network and host portions. It determines how must host are available on the network. This can be manipulated to form CIDR blocks
IPV4	This is a 32 bit, 4 octet address. Written in binary or dotted decimal format. E.g. 192.168.10.20 or 11000000.101010000.0001010.00010100
IPV6	This is a 128 bit, hexadecimal address. 2001:DB8:7654:3210:FEDC:BA98:764:3203
Private IP (RFC1918)	A special range that can be used internally by anyone. These are non internet routable
Public IP	IP address that is routable on the internet
DHCP	Dynamic Host Control protocol. A method to automatically assign an IP address to a client
Static IP	An IP that does not change after being assigned
F. b 115	T

Temporary IP that is not reserved

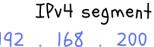
Ephemeral IP

Bring Your Own IP (BYOIP)	Use external IP addresses that you own in Google Cloud	
Alias IP	Additional addresses that can be assigned to your VM, these can be taken from the primary or secondary address range	
Secondary IP	Secondary range of IP address that can be assigned to your VM	
Restricted.googlea pis.com IP	Access external GCP APIs via google private network. 199.36.153.4/30. Used when VPC service controls are enabled and you need to access only VPC service control supported APIs	
Private.googleapis. com IP	Access external GCP APIs via google private network. 199.36.153.8/30	
IPv4 Address		

Networking 101 sheet .!!!

What is the amount of reserved IP's in GCP subnet?

- Count 4
- What is the smallest GCP private subnet /29 with 4 host.
 - Formular 2ⁿ 4


Can IPV6 be used?

Yes, see here

Can I set private and public static IP's in my VPC?

- Yes, see below:
- External static
 - Internal static

Network Host

255 255 O Dotted decimal

2 Dotted decimal

Binary

11111111 111111 ШШ 00000000 Binary

200 .

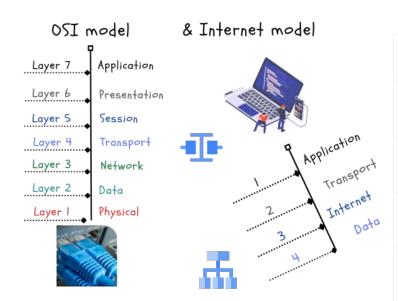
11001000 00000010

/24

10101000

32 bits

Subnet


11000000

8 bits

OSI model and Internet model

What is the OSI Model	A 7 layer conceptual model that provides interoperability of the TCP stack
Application Layer (Layer 7)	User interface and application. Protocols examples HTTP, HTML
Presentation Layer (Layer 6)	Formats data to be presented. Protocols examples JPEG, ASCII, GIF
Session Layer (Layer 5)	Creates, tracks, ends the sessions between different systems
Transport layer (Layer 4)	Handles message delivery using connection and connectionless protocols. Protocol examples TCP, UDP
Network layer (Layer 3)	Focuses on subnets, route path selection. Protocols examples IP, ICMP,. Router work here
Data layer (Layer 2)	Focuses of transferring data frames over physical layer. Protocol, ARP, PPP, VLANS. Switches work here
Physical layer (Layer 1)	Transmission of raw bits over physical mediums. Examples network cables, wireless

What is the Internet Model	A 4 layer model conceptual model of the TCP/IP stack
Application Layer	User interface and application.
Transport layer	Responsible for end to end data handling of data streams
Internet layer	Responsible for routing packets through networks
Link layer	From a device it interacts with physical network

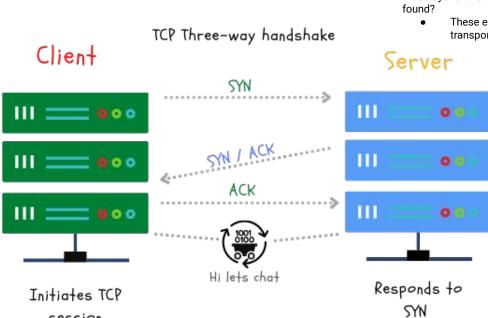
Networking 101 sheet .!!!

What is interoperability?

 The ability to communicate between different communication devices in a standard way.

Does a physical layer exist in the cloud?

Yes, there are hardware devices located in **Google Data**Centers. These are 100% managed by Google.


	GCP Services operating at different OSI layers		
Layer 7	HTTPS Load balances, Cloud Armor		
Layer 4	Load balancers		
Layer 3	Interconnect		
Layer 2	Interconnect VLANs		

TCP, TCP three-way handshake, UDP, QUIC

Transmission Control Protocol (TCP)	This is a connection oriented protocol that handles reliability, flow and congestion control of packets. It establishes a connection before sending a packet
Transmission Control Block (TCB)	Contains all the information about the connection and implements the sliding window
Sliding window	Determines the amount of bytes that one system can send to the other. Once the agreed bytes are received and processed, the sender sends another set of bytes to the receiver until all data is sent
Three-way handshake	This is the sequence to form a TCP connection. It involve the SYN, SYN/ACK, ACK flag exchange between client/server
Flag	These indicate the state of the connection
SYN	The SYN or synchronize flag is sent to start the TCP connection process
ACK	The ACK or the acknowledgement flag. This confirms that data was received
FIN	A flag sent to request termination of connection
User Datagram Protocol (UDP)	This is a best effort delivery protocol

Quick UDP Internet Connections (QUIC)	A Google made transport layer protocol. This is built on top of UDP
Transport Layer Security (TLS)	A protocol that provides cryptography by using certificates

session

Networking 101 sheet .!!!

How does TCP differ from UDP?

TCP is connection oriented, UDP is best effort.

What layer of the OSI is TCP and UDP

These exist at layer 4, transport layer.

Packet, Frame, MTU

Data messages types	These are frames, packets, datagrams. They may exist at different layers of the OSI model	
Maximum transfer unit (MTU)	The size of the largest unit of data that can be transmitted over the network	
Time to Live (TTL)	This indicates the life of the packet usually has a max of 255 hops. This ensures packets don't exist forever in a network	
Unicast message	These are sent on a 1 to 1 basis on a network	
Multicast message	These are sent to subscribed groups on a network	
Broadcast message	These are sent to every device on a network.	


```
Frame 2: 60 bytes on wire (480 bits), 60 bytes captured (480 bits)

■ Ethernet II, Src: Standard 68:8b:fb (00:e0:29:68:8b:fb), Dst: 3com 1b:07:fa (00:20:af:1b:07:fa)

  △ Destination: 3com 1b:07:fa (00:20:af:1b:07:fa)
       Address: 3com 1b:07:fa (00:20:af:1b:07:fa)
       ......0. .... = LG bit: Globally unique address (factory default)
       .... ...0 .... = IG bit: Individual address (unicast)
  Source: Standard_68:8b:fb (00:e0:29:68:8b:fb)
       Address: Standard 68:8b:fb (00:e0:29:68:8b:fb)
       .....0. .... = LG bit: Globally unique address (factory default)
       .... ...0 .... = IG bit: Individual address (unicast)
    Type: ARP (0x0806)
    Padding: 010101010101010101010101010101010101

▲ Address Resolution Protocol (reply)

    Hardware type: Ethernet (1)
    Protocol type: IP (0x0800)
    Hardware size: 6
    Protocol size: 4
0000 00 20 af 1b 07 fa 00 e0 29 68 8b fb 08 06 00 01
     08 00 06 04 00 02 00 e0 29 68 8b fb c0 a8 00 01
```

00 20 af 1b 07 fa c0 a8 00 02 01 01 01 01 01 01

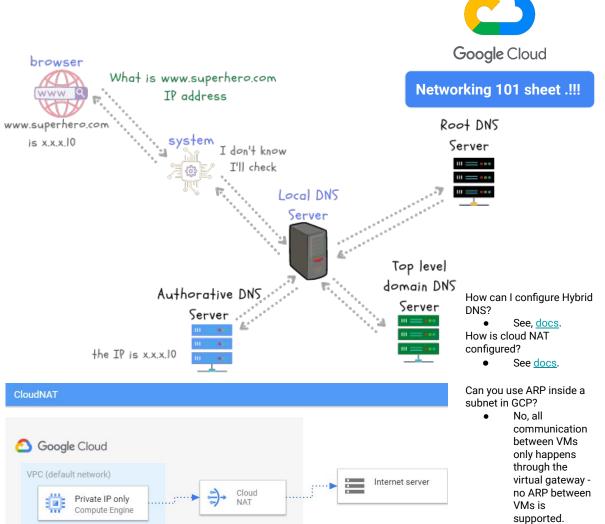
0030 01 01 01 01 01 01 01 01 01 01 01 01

Networking 101 sheet .!!!

How do the different message types work?

See guide

What MTU option do you have in Google Cloud?


Currently, 1440, 1460, 1500.

Does multicast and broadcast works natively work in Google Cloud?

Currently no.

ARP, RARP, DNS & NAT

Domain Name Service (DNS)	Resolves names to IP addresses		
Cloud DNS	Google Cloud DNS offering		
Internal DNS	Used internally within a private network		
DNS Security Extensions (DNSSEC)	Uses digital signature to secure DNS information		
Hybrid DNS	DNS configured between cloud and on-prem or external networks		
Address resolution Protocol (ARP)	Protocol used to resolve IP address to a MAC/link layer address. Maintained in the ARP table.		
Reverse ARP (RARP)	This is the inverse of ARP. Used to resolve MAC to IP addresses.		
Media Access Control address (MAC)	Unique hexadecimal identifier assigned to a network interface controller (NIC) card. Usually a 12 digit hexadecimal number.		
Network Address Translation (NAT)	Allows private IP ranges to communicate with the internet. Maintains a NAT table of private to public address & port mappings for communications.		
Cloud NAT	Google Cloud managed NAT service		

Routing, Cloud Router, Dynamic Routing, BGP, MPLS

Routing	Selecting a path for traffic to flow within internal networks or between different networks	Border Gateway Protocol (BGP)	Is the path vector protocol of the internet. Made up of Autonomous systems (AS) and uses TCP port 179	
Router	Allows communication between different networks	Autonomous System (AS)	Is a collection of connected Internet Protocol (IP) routing prefixes under the control of one or more network operators	
Cloud Router	Google Cloud router that allows you to dynamically exchange routes between your VPC and on-prem using BGP	Autonomous System Number (ASN)	The number used to identify an AS. This can be 16 bit or 32 bit	
Routing table	A repository of all the routing information within a network	External BGP (eBGP)	BGP connection formed between different AS's	
Routing modes	These are static or dynamic	Internal BGP (iBGP)	Connection formed within the same AS	
Static routing	These routes are fixed an don't update. They usually have to be manually adjusted	Multiple Exit Discriminator (MED)	This a one of several BGP attributes used to influence path selection. This is non transitive and the lower metric wins	
Dynamic routing	mic routing These routes update to reflect current state AS-path-prepend		This is one of several BGP attributes used	
Route summarization	Used to reduce the number of route advertised to neighbours. See example	7.6 paul propend	to influence path selection. This is a mandatory attribute. The shorter path should be preferred	
next-hop	The address of the next router in the transit route of a packet	Multiprotocol label switching (MPLS)	This is a switching method that uses labels instead of IP information to transmit packets across the backbone	
Software Defined Networking (SDN)	A software based networking approach that uses application programming interfaces (API) to communicate with underlying infrastructure to control the network traffic		core at high speed	
		Bidirectional Forwarding Detection (BFD)	This is a protocol that detects failure quickly on links when enabled. In GCP you can use this <u>feature</u> with Cloud router	

Networking 101 sheet .!!!

What is Google Cloud Platform's network virtualization stack called?

Andromeda

Max amount of BGP routes advertised to Cloud router?

Presently 100

How can you control path selection using BGP attributes in GCP?

MED is supported.

What is the ASN number used in GCP for partner interconnect?

 Presently ASN 16550 is automatically assigned.

Connectivity and Hybrid connectivity

	•	•
Dedicated Interconnect	Dedicated connection between Google and your private network. Available from 10 GBit/s to 100 GBit/s. Has high availability configurations and you can use multiple links	
Partner Interconnect	Highly available connection between Google and your network provisioned through a Service provider. Available from 50 MBit/s to 10 GBit/s. Has high availability configuration and you can use multiple links	
Virtual private network (VPN)	This offers a secure connection between two locations over a secure IPSEC tunnel	
Cloud VPN	Google Cloud VPN service	
Carrier Peering	Google Cloud service that enables you to access Google Workspace and other Google apps via service provider connection	
Direct Peering	Google Cloud service that enables you to access google Workspace and other Google apps via direct connection to Google edge	
Shared VPC	GCP service that allow you to provision and connect host projects, and service projects	
VPC Network Peering	GCP service that allow you to connect between different VPC's in the same or separate project and organizations. 1-to-1 peering that is not transitive. Max peering per VPC is 25 connections	

Google Cloud service that offers a fully managed traffic control plane for service mesh

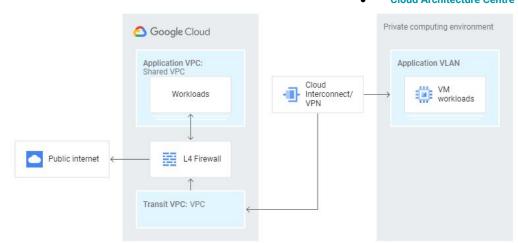
Networking 101 sheet .!!!

Shared VPC or VPC network peering?

 The best practices VPC design document will be helpful.

Are VPNs redundant?

You have high availability configuration options.


Dedicated or Partner Interconnect?

Depends on several factors.

Where can I find GCP Networking reference Architectures?

Cloud Architecture Centre

Private computing environment

Network Security

Firewalls	Allow, deny & filter traffic based on rules. Affect ingress and egress traffic
Firewalls rules	Criteria used to deny, allow access in GCP. e.g. IP, source, tag, service account
Distributed denial of service (DDoS)	This is a type of attack that affect availability of service by overloading the systems
Cloud Armor	Google Cloud service that provides filtering at OSI layer 7 to 4
VPC service controls	Google Cloud service that allows you the ability to create perimeters that protect resources and data
Cloud Identity-Aware Proxy (IAP)	Google Cloud service that controls access to your application and restricts it to only authorized users
Security Command Center	Google Cloud service that has asset discovery, threat detection, and threat prevention components
Beyond Corp	Google Cloud zero trust model

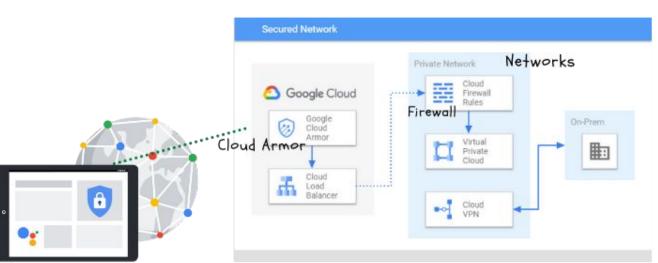
Networking 101 sheet .!!!

What can help with DDoS attacks?

Cloud Armor, Autoscaling, Load balancing.

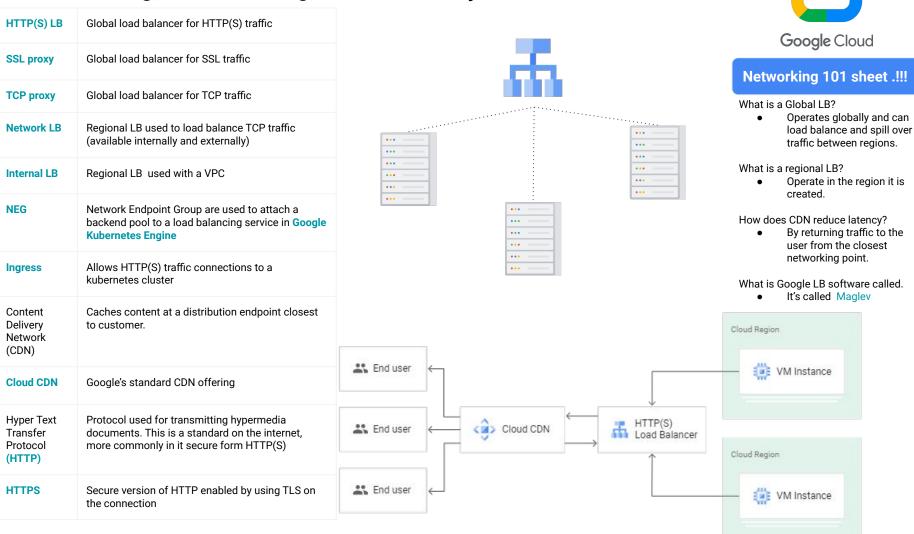
What are the current firewall components?

• Priority, action, enforcement, target, source filter, ports.

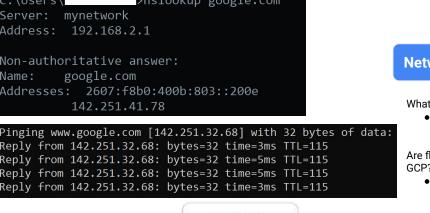

How are firewall rules read?

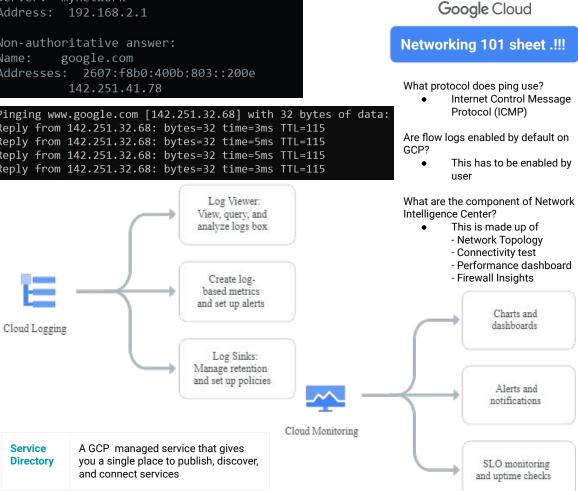
• From lowest 0 to highest 65535.

How does Cloud firewall handle connect state.?


These are stateful firewalls.

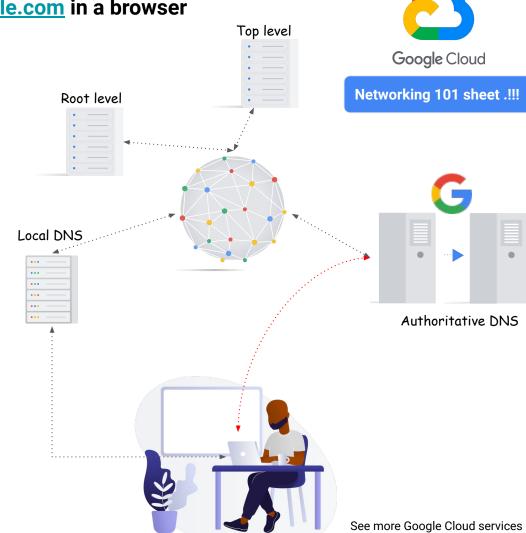



Traffic handling, Load balancing, Content Delivery



Troubleshooting & Monitoring

Troubleoniouting a monitoring		
ping	This tool checks the availability of host by using Internet Control Message Protocol	
Traceroute or tracert	Shows the hops between source and destination	
nslookup	Allows you to resolve IP from host name	
Domain information groper (dig)	Performs DNS lookup and displays the answers of the query	
ipconfig or ifconfig	Show the IP address, subnet and gateway information of a system	
Flow logs	This GCP service tells you about the traffic flow in your VPC	
Network Intelligence Center	GCP service that provides you with a few tools to gain visibility into your network	
Cloud Audit Logs	Google Cloud logs that provide information on activities in your cloud. A few are; Admin Activity, Data Access, system events and Policy denied, audit logs	
Cloud Operations	Google Cloud tool that allows you to monitor, log and trace application and systems in your environments	
Packet Mirroring	Packet Mirroring clones the traffic on the network and forwards it for examination. See more here	



What happens when you type www.google.com in a browser

#1	Open browser type www.google.com
#2	Browser cache is checked to see if IP information was cached
#3	If #2 has no infor system checks host file for address information
#4	If #3 has no info, system queries local DNS
#5	If #4 has no info query sent to Service Provider (SP) DNS
#6	If SP has no info query sent to Root level DNS
#7	Root level returns the Top level DNS
#8	Top level DNs returns the Authoritative DNS who has the record
#9	Authoritative DNS returns a DNS response with the IP address and DNS TTL information
#10	The system now has the IP address and initiates a TCP connection to the server
#11	TCP three-way handshake takes place, TLS Secure authentication process takes place and secure connection is setup.
#12	HTTP(S)/HTML process begins to return information as required

on the **Develop cheat sheet**